Note

This website is presently under development. The primary website for MOPAC is still http://openmopac.net until the majority of its contents have been migrated here.

Bibliography

The list of papers that are cited elsewhere in this documentation, excluding the papers in the impact section.

1

D. R. Armstrong, R. Fortune, P. G. Perkins, and J. J. P. Stewart. Molecular orbital theory for the excited states of transition metal complexes. J. Chem. Soc., Faraday Trans. 2, 68:1839–1846, 1972. URL: http://dx.doi.org/10.1039/F29726801839, doi:10.1039/F29726801839.

2

Pathik S. Brahmkshatriya, Petr Dobes, Jindrich Fanfrlik, Jan Rezac, Kamil Paruch, Agnieszka Bronowska, Martin Lepsík, and Pavel Hobza. Quantum mechanical scoring: structural and energetic insights into cyclin-dependent kinase 2 inhibition by pyrazolo$[$1,5-a$]$pyrimidines. Current Computer - Aided Drug Design, 9(1):118–129, 2013-03-01T00:00:00. URL: https://www.ingentaconnect.com/content/ben/cad/2013/00000009/00000001/art00011.

3

Michael J. S. Dewar, Joseph A. Hashmall, and Clifford G. Venier. Ground states of conjugated molecules. ix. hydrocarbon radicals and radical ions. Journal of the American Chemical Society, 90(8):1953–1957, 04 1968. URL: https://doi.org/10.1021/ja01010a005, doi:10.1021/ja01010a005.

4

Michael J. S. Dewar and Walter Thiel. Ground states of molecules. 38. the mndo method. approximations and parameters. Journal of the American Chemical Society, 99(15):4899–4907, 06 1977. URL: https://doi.org/10.1021/ja00457a004, doi:10.1021/ja00457a004.

5

Michael J. S. Dewar, Eve G. Zoebisch, Eamonn F. Healy, and James J. P. Stewart. Development and use of quantum mechanical molecular models. 76. am1: a new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, 107(13):3902–3909, 06 1985. URL: https://doi.org/10.1021/ja00299a024, doi:10.1021/ja00299a024.

6

Michael J.S. Dewar and Daniel A. Liotard. An efficient procedure for calculating the molecular gradient, using scf-ci semiempirical wavefunctions with a limited number of configurations. Journal of Molecular Structure: THEOCHEM, 206(1):123–133, 1990. URL: https://www.sciencedirect.com/science/article/pii/016612809085012C, doi:https://doi.org/10.1016/0166-1280(90)85012-C.

7

Rebecca L. M. Gieseking. A new release of mopac incorporating the indo/s semiempirical model with ci excited states. Journal of Computational Chemistry, 42(5):365–378, 2021. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.26455, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.26455, doi:https://doi.org/10.1002/jcc.26455.

8

Stefan Grimme, Jens Antony, Stephan Ehrlich, and Helge Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu. The Journal of Chemical Physics, 132(15):154104, 2021/06/07 2010. URL: https://doi.org/10.1063/1.3382344, doi:10.1063/1.3382344.

9

A. Klamt and G. Schüürmann. Cosmo: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc., Perkin Trans. 2, pages 799–805, 1993. URL: http://dx.doi.org/10.1039/P29930000799, doi:10.1039/P29930000799.

10

T Koopmans. Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica, 1(1):104–113, 1934. URL: https://www.sciencedirect.com/science/article/pii/S0031891434900112, doi:https://doi.org/10.1016/S0031-8914(34)90011-2.

11

Martin Korth. Third-generation hydrogen-bonding corrections for semiempirical qm methods and force fields. Journal of Chemical Theory and Computation, 6(12):3808–3816, 12 2010. URL: https://doi.org/10.1021/ct100408b, doi:10.1021/ct100408b.

12

Martin Korth, Michal Pitoňák, Jan Řezáč, and Pavel Hobza. A transferable h-bonding correction for semiempirical quantum-chemical methods. Journal of Chemical Theory and Computation, 6(1):344–352, 01 2010. URL: https://doi.org/10.1021/ct900541n, doi:10.1021/ct900541n.

13

J. Ridley and Michael Zerner. An intermediate neglect of differential overlap technique for spectroscopy: pyrrole and the azines. Theoretica chimica acta, 32(2):111–134, 1973. URL: https://doi.org/10.1007/BF00528484, doi:10.1007/BF00528484.

14

Gerd B. Rocha, Ricardo O. Freire, Alfredo M. Simas, and James J. P. Stewart. Rm1: a reparameterization of am1 for h, c, n, o, p, s, f, cl, br, and i. Journal of Computational Chemistry, 27(10):1101–1111, 2021/06/07 2006. URL: https://doi.org/10.1002/jcc.20425, doi:https://doi.org/10.1002/jcc.20425.

15

James J. P. Stewart. Optimization of parameters for semiempirical methods i. method. Journal of Computational Chemistry, 10(2):209–220, 2021/06/07 1989. URL: https://doi.org/10.1002/jcc.540100208, doi:https://doi.org/10.1002/jcc.540100208.

16

James J. P. Stewart. Optimization of parameters for semiempirical methods ii. applications. Journal of Computational Chemistry, 10(2):221–264, 2021/06/07 1989. URL: https://doi.org/10.1002/jcc.540100209, doi:https://doi.org/10.1002/jcc.540100209.

17

James J. P. Stewart. MOPAC: A semiempirical molecular orbital program. Journal of Computer-Aided Molecular Design, 4(1):1–103, 1990. URL: https://doi.org/10.1007/BF00128336, doi:10.1007/BF00128336.

18

James J. P. Stewart. Optimization of parameters for semiempirical methods v: modification of nddo approximations and application to 70 elements. Journal of Molecular Modeling, 13(12):1173–1213, 2007. URL: https://doi.org/10.1007/s00894-007-0233-4, doi:10.1007/s00894-007-0233-4.

19

James J. P. Stewart. Optimization of parameters for semiempirical methods vi: more modifications to the nddo approximations and re-optimization of parameters. Journal of Molecular Modeling, 19(1):1–32, 2013. URL: https://doi.org/10.1007/s00894-012-1667-x, doi:10.1007/s00894-012-1667-x.

20

Walter Thiel and Alexander A. Voityuk. Extension of the mndo formalism tod orbitals: integral approximations and preliminary numerical results. Theoretica chimica acta, 81(6):391–404, 1992. URL: https://doi.org/10.1007/BF01134863, doi:10.1007/BF01134863.

21

Walter Thiel and Alexander A. Voityuk. Extension of mndo to d orbitals: parameters and results for the second-row elements and for the zinc group. The Journal of Physical Chemistry, 100(2):616–626, 01 1996. URL: https://doi.org/10.1021/jp952148o, doi:10.1021/jp952148o.

22

Barbora Vorlová, Dana Nachtigallová, Jana Jirásková-Vaníčková, Haresh Ajani, Petr Jansa, Jan Řezáč, Jindřich Fanfrlík, Michal Otyepka, Pavel Hobza, Jan Konvalinka, and Martin Lepšík. Malonate-based inhibitors of mammalian serine racemase: kinetic characterization and structure-based computational study. European Journal of Medicinal Chemistry, 89:189–197, 2015. URL: https://www.sciencedirect.com/science/article/pii/S0223523414009702, doi:https://doi.org/10.1016/j.ejmech.2014.10.043.

23

Jan Řezáč and Pavel Hobza. A halogen-bonding correction for the semiempirical pm6 method. Chemical Physics Letters, 506(4):286–289, 2011. URL: https://www.sciencedirect.com/science/article/pii/S0009261411002600, doi:https://doi.org/10.1016/j.cplett.2011.03.009.

24

Jan Řezáč and Pavel Hobza. Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods. Journal of Chemical Theory and Computation, 8(1):141–151, 01 2012. URL: https://doi.org/10.1021/ct200751e, doi:10.1021/ct200751e.

25

Jan Řezáč, Kevin E. Riley, and Pavel Hobza. Benchmark calculations of noncovalent interactions of halogenated molecules. Journal of Chemical Theory and Computation, 8(11):4285–4292, 11 2012. URL: https://doi.org/10.1021/ct300647k, doi:10.1021/ct300647k.